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Single-Strand Specific, Plasmid Borne DNA Methyltransferases M.BceJIll and M.EcoGIX Regulate Plasmid and Single-Stranded Phage Replication.
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The role of prokaryotic DNA methyltransferases within restriction-modification systems has been well established, while the functional role of the many orphan DNA methyltransferases is still far from clear. Two examples of Dam- and Dcm- orphan DNA methyltransferases have
been extensively studied and functional roles in mismatch DNA repair, DNA replication and phase Variation of protein expression have been established (1). We took advantage of the recently developed platform for single-molecule real time sequencing by Pacific Biosciences to
investigate DNA methyltransferase specificity. The analysis of total DNA from two pathogenic strains of B. cenocepacia J2315 and E.coli 0104:H4 genomic DNA has revealed the presence of two unusual methyltransferases not previously characterized (2, 3). Both are plasmid-
encoded by ORFs in pBCAO72 for B. cenocepacia J2315 and pESBL for E.coli 0104:H4. They both result in single-stranded,almost non-specific ™A modification, within the motif SAB (where S =C or G and B = C, G or T). This methylation is partial and only detected on plasmid DNA.
We have called these enzymes M.Bcellll and M.EcoGIX respectively. A set of genetic and biochemical experiments suggested that the activity of these enzymes is associated with plasmid replication and depended on the origin of replication. While ColEl and p15 origins support
plasmid modification, the pSC101 origin does not. Moreover, we demonstrated that these enzymes work as a complex with DNA polymerase Iduring plasmid replication and may modify the lagging strand. It is possible they control plasmid and phage replication by discriminating
DNA polymerase I-dependent and non-dependent plasmids origins. We suggest that the base flipping inherent to DNA modification may allow the methylase to perform a DNA helicase function and thereby help to control the rate of DNA polymerization to prevent excessive
recombination.
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