

NEBNext Direct[®] Custom Ready Panels overcome challenges associated with targeted re-sequencing

Andrew J. Barry¹, Sarah K. Bowman², Kruti M. Patel², Susan Corbett², Amy B. Emerman², Charles Elfe², Evan Mauceli², Jonathon Dunn², Brendan Desmond², Fiona Stewart¹, Salvatore Russello¹, Cynthia L. Hendrickson² Theodore B. Davis¹ ¹New England Biolabs, Ipswich, MA, USA. ²Directed Genomics, Ipswich, MA, USA.

ABSTRACT

Efficient utilization of targeted gene panels for oncology research is challenged by the wide variation in gene constituents specific to a given study. While focused gene panels efficiently provide the necessary depth of coverage for low frequency variant detection, the high costs and design challenges associated with *de novo* panel design present challenges.

The NEBNext Direct[®] technology utilizes a novel approach to selectively enrich nucleic acid targets ranging from a single gene to several hundred genes, without sacrificing specificity. The approach rapidly hybridizes both strands of genomic DNA with biotinylated probes prior to streptavidin bead capture, enzymatic removal of off-target sequence, and conversion of captured molecules into sequencer-ready libraries. This results in a unique read coverage across a given target. Unlike alternative hybridization methods, the approach does not necessitate upfront library preparation, and instead converts the captured molecules into dual-indexed Illumina sequencer compatible libraries containing an 8 basepair sample ID and a 12bp Unique Molecule Index (UMI). The UMI individually tags each molecule prior to the final PCR amplification of the library, enabling identification of PCR duplicate molecules. The result is a 1-day protocol that enables the preparation of sequence-ready libraries from purified genomic DNA specific to the gene content included in the panel.

We have designed and developed baits specific to the full exonic content of ~850 genes with clinical significance across a variety of disease areas. These are designed, balanced, and pooled on a per gene basis, and can be combined into customized panels, allowing rapid turnaround of specific custom gene subsets. Here, we present the ability to rapidly deploy custom gene panels across a variety of panel sizes and content, while maintaining high specificity, uniformity of coverage across target content, and sensitivity to detect nucleic acid variants to drive translational research applications.

1. Workflow

2. Materials and Methods

445 genes Custom Ready Genes associated with cancer were selected at random. Bait pools were created from 1, 10, 25, 50, 100, and all 445 genes and were used in the capture of 10 ng to 500 ng of DNA using the NEBNext Direct method. 100ng of DNA, representing a blend of 24 wellcharacterized HapMap Samples. Following enrichment, resulting libraries were sequenced on a MiSeq using 2 x 150 bp sequencing chemistry.

ABL1	CD274	EPHA5	GALNT12	KMT2C	NSD1	RAF1	SOX9
ABL2	CD79A	EPHA7	GATA1	KMT2D	NTHL1	RARA	SPEN
ACVR1B	CD79B	EPHB1	GATA2	KRAS	NTRK1	RASAL1	SPINK1
AIP	CD82	ERBB2	GATA3	LIG4	NTRK2	RB1	SPOP
AKT1	CD83	ERBB3	GATA4	LMO1	NTRK3	RBM10	SPRED1
AKT2	CDC73	ERBB4	GATA6	LRP1B	NUP93	RECQL4	SPTA1
АКТЗ	CDH1	ERCC2	GDNF	LRRFIP2	PAK3	RET	SRC
ALK	CDH2	ERCC3	GID4	LYN	PALB2	RFFL	SRSF2
AMER1	CDH4	ERCC4	GLI1	LZTR1	PALLD	RHEB	STAG2
APC	CDK12	ERCC5	GNA11	MAGI1	PARK2	RICTOR	STAT3
AR	CDK4	ERG	GNA13	MAGI2	PAX5	RINT1	STAT4
ARAF	CDK6	ERRFI1	GNAQ	MAP2K1	PBRM1	RIT1	STK11
ARFRP1	CDK8	ESR1	GNAS	MAP2K2	PDCD1LG2	RNASEL	SUFU
ARID1A	CDKN1A	ETV1	GPC3	MAP2K4	PDGFR	RNF2	SYK
ARID1B	CDKN1B	ETV4	GPR124	MAP3K1	PDGFRA	RNF43	TAF1
ARID2	CDKN1C	ETV5	GREM1	MAPK1	PDK1	ROS1	ТВХЗ
ASIP	CDKN2A	ETV6	GRIN2A	MAX	PHF6	RPL11	TCF12
ASXL1	CDKN2B	EWSR1	GRM3	MC1R	PHOX2B	RPL26	TERC
ATM	CDKN2C	EXO1	GSK3B	MCL1	PICK1	RPL35A	TERT
ATR	CEBPA	EZH2	H3F3A	MDH2	PIK3C2B	RPL5	TERTP
ATRX	CEP112	FAM175A	H3F3B	MDM2	ΡΙΚ3ϹΑ	RPS10	TET2
AURKA	CEP57	FAM46C	HGF	MDM4	РІКЗСВ	RPS19	TGFBR2
AURKB	CHD2	FANCA	HIST1H3B	MED12	PIK3CG	RPS24	TINF2
AXIN1	CHD4	FANCB	HNF1A	MEF2B	PIK3R1	RPS26	TMEM127
AXIN2	CHEK1	FANCC	HNF1B	MEN1	PIK3R2	RPS7	TMPRSS2
AXL	CHEK2	FANCD2	HOXB13	MET	PIM1	RPTOR	TNFAIP3
BAP1	CIC	FANCE	HRAS	MITE	PLCG2	RSPO2	TNFRSF14
BARD1	CREBBP	FANCF	HSD3B1	MLH1	PMS1	RUNX1	TOP1
BCL2	CRKL	FANCG	HSP90AA1	MLH3	PMS2	RUNX1T1	TOP2A
BCL2L1	CRLF2	FANCI	IDH1	MPL	POLD1	SBDS	TP53
BCL2L2	CSF1R	FANCL	IDH2	MRE11A	POLE	SDHA	TSC1
BCL6	CSF3R	FANCM	IGF1R	MRPL36	POLH	SDHAF2	TSC2
BCOR	CTCF	FAS	IGF2	MSH2	POT1	SDHB	TSHR
BCORL1	CTNNA1	FBXW7	IKBKE	MSH3	PPM1D	SDHC	TYR
BLM	CTNNB1	FGF10	IKZF1	MSH6	PPP2R1A	SDHD	TYRP1
BMPR1A	CTRC	FGF14	IL7R	MSR1	PRDM1	SET	VEGFA
BRAF	CUL3	FGF19	INHBA	MTOR	PREX2	SETBP1	VHL
BRCA1	CUX1	FGF23	INPP4B	MUTYH	PRF1	SETD2	WAS
BRCA2	CYLD	FGF3	IRF2	MXI1	PRKAR1A	SF3B1	WISP3
BRD2	DAXX	FGF4	IRF4	MYC	PRKCI	SLIT2	WRN
BRD3	DDB2	FGF6	IRS2	MYCL	PRKDC	SLTM	WT1
BRD4	DDR2	FGFR1	JAK1	MYCN	PRPF8	SLX4	XPA
BRIP1	DICER1	FGFR2	JAK2	MYD88	PRSS1	SMAD2	ХРС
BTG1	DIS3L2	FGFR3	JAK3	NBN	PRSS8	SMAD3	XPO1
ВТК	DKC1	FGFR4	JUN	NF1	PTCH1	SMAD4	XRCC2
BTNL2	DNMT3A	FH	КАТ6А	NF2	PTCH2	SMARCA4	XRCC3
BUB1B	DNMT3B	FLCN	KDM5A	NFE2L2	PTEN	SMARCB1	ZBTB2
CALR	DOT1I	FLT1	KDM5C	NFKBIA	PTPN11	SMARCE1	ZEHX3
CARD11	EGFR	FLT3	KDM6A	NHP2	OKI	SMC1A	ZNF217
CASR	EGLN1	FLT4	KDR	NKX2-1	RAB35	SMC3	ZNF703
CBFB	ELAC1	FOXL2	KEAP1	NOP10	RAC1	SMO	ZNRF3
CBI	ELAC2	FOXP1	KEI	NOTCH1	RAD21	SMOX	ZRSR2
CCND1	ENG	FRS2	KIF1B	NOTCH2	RAD50	SNCAIP	
CCND2	EP300	FUBP1	KIT	NOTCH3	RAD51	SOCS1	
CCND3	EPCAM	FZR1	KLHI 6	NPM1	RAD51C	SOX10	
CCNF1	EPHA3	GABRA6	KMT2A	NRAS	RAD51D	SOX2	
		2, 21, 10				C	

3. Results: Coverage after duplicate removal

Libraries were prepared using the NEBNext Direct approach from a blend of 24 HapMap DNAs, Horizon® TruQ7 1% Variant Control DNA, and matched pairs of fresh frozen and FFPE DNA from liver, sheared to 200 bp with a Covaris. Denatured fragments of genomic DNA were hybridized to biotinylated baits targeting 1 to 445 genes from NEBNext Direct's Predesigned Content. Hybridized fragments were bound to streptavidin beads and separated from unbound fragments, then 3' off-target sequences were enzymatically removed. A 3' adapter and a 5' adapter containing a 12base unique molecular identifier (UMI) were ligated to the samples, then the loop adapter was cleaved. Target strands were PCR amplified using a PCR primer to add an 8-base sample index. After sequencing the libraries on an Illumina® Miseq by PE150, the reads were aligned using BWA-MEM, and PCR duplicates were filtered using the UMIs and fgbio tools.

4. Results: Sensitivity to detect variants

2% Variant Detection with a blend of 24 HapMap DNAs

In All Panels	In 10 Gene through 445 Gene Panels	
In 25 Gene through 445 Gene Panels	In 50 Gene through 445 Gene Panels	
In 100 Gene and 445 Gene Panels	In 445 Gene Panel Only	

5. Results: Specificity and uniformity vs. panel size

6. Results: Retention of target behavior

p22.2 p	21.3 p21.2 p15.3 p15.1	p14.2 p13	p12.2 p11.2 q11.1 q11.22 q21.11 q21.12 q21.3 q22.1	q22.3 q31.1 q31.2 q31.32 q32.1 q33 q34 q35 q36.1 q36.3
0 bp	140,777,000 bp 	140,778,000 bp 	8,061 bp	■
[0 - 22116]			1 Gene (3Kb) Panel	
[0 - 8993]			10 Gene (30Kb) Panel	
[0 - 9422]			25 Gene (70Kb) Panel	
[0 - 9232]			50 Gene (150Kb) Panel	
[0 - 20955]			100 Gene (280Kb) Panel	
	· · · ·		· · · · · · · · · · · · · · · · · · ·	

Detection of 2% known variants from the 24 HapMap DNA blend and detection of 1% known variants from TruQ7 control DNA was performed with Mutect and Vardict.

100 ng FFPE 50 ng FFPE 25 ng FFPE Confirmed 100 ng **COSM ID** Ref Gene Chr Pos Alt VAF VAF Somatic | Frozen VAF | VAF PTEN chr10 87960892 COSM13731 4.17% A T Yes 3.49% 4.04% 5.71% PTEN chr10 87960992 C T COSM921142 0.64% 0.66% n.d. n.d. No MRE11A chr11 94479764 TA T COSM253028 5.49% 8.23% 7.76% 12.20% Yes KRAS chr12 25209871 C T COSM41307 1.43% 2.01% 1.36% Yes n.d

Cosmic Variants Detected within Fresh Frozen and FFPE Libraries

Variant detection was performed with Mutect and Vardict. Cosmic variants were identified in 100 ng of fresh frozen DNA and in 25 ng to 100 ng of FFPE DNA

■ 1 Gene Panel (3Kb) ■ 10 Gene Panel (30Kb) ■ 25 Gene Panel (70Kb)

■ 50 Gene Panel (150Kb) ■ 100 Gene Panel (280Kb)

Greater than 99% of the reads aligned as pairs and 85-98% of the reads mapped to the targets, depending on the panel.

Coverage for all exon bases for the targeted genes was determined. Small regions from a few of the genes were unable to be targeted due to repetitive sequences, resulting in some decrease in coverage with the larger panels.

IGV images of 4 BRAF exons and mean target coverage across all BRAF exons demonstrate that BRAF retains it's coverage profile across panels.

7. Conclusions and references

Unique panels generated from subsets of Custom Ready genes display predictable capture performance with high specificity, coverage uniformity, and sensitivity across a wide range of panel sizes. Thus, we can rapidly produce cost-effective, highly scalable, custom gene panels to target specific genes for a wide range of genomic research and translational applications.

1) Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio.GN]

2) Robinson, J. T., et al. (2011) Integrative genomics viewer. Nat. Biotechnology. 29:24–26.

3) Thorvaldsdóttir, H., Robinson, J. T., and Mesirov, J. P.(2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics. 14:178–192.

4) Cibulskis, K. et al. (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnology. 31:213-219.

5) Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, Johnson J, Dougherty B, Barrett JC, and Dry JR. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016, pii: gkw227.

6) The fgbio tools are available from https://github.com/fulcrumgenomics/fgbio.

For Research Use Only

www.NEBNextDirect.com