

240 County Road Ipswich, MA 01938-2723 Tel 978-927-5054 Fax 978-921-1350 www.neb.com info@neb.com

New England Biolabs Certificate of Analysis

Product Name: M-MuLV Reverse Transcriptase

Catalog Number: M0253L
Concentration: 200,000 U/ml

Unit Definition: One unit is defined as the amount of enzyme required to incorporate

1 nmol of dTTP into an acid-insoluble form in 10 minutes at 37°C.

Lot Number: 10030281
Expiration Date: 09/2020
Storage Temperature: -20°C

Storage Conditions: 50 mM Tris-HCl, 150 mM NaCl, 1 mM DTT, 0.1 mM EDTA, 0.1 % IGEPAL®

CA-630, 50 % Glycerol, (pH 7.6 @ 25°C)

Specification Version: PS-M0253S/L v1.0

M-MuLV Reverse Transcriptase Component List			
NEB Part Number	Component Description	Lot Number	Individual QC Result

Assay Name/Specification	Lot # 10030281
Endonuclease Activity (Nicking) A 50 μl reaction in M-MuLV Reverse Transcriptase Reaction Buffer containing 1 μg of supercoiled PhiX174 DNA and a minimum of 200 units of M-MuLV Reverse Transcriptase incubated for 4 hours at 37°C results in <10% conversion to the nicked form as determined by agarose gel electrophoresis.	Pass
Exonuclease Activity (Radioactivity Release) A 50 µl reaction in M-MuLV Reverse Transcriptase Reaction Buffer containing 1 µg of a mixture of single and double-stranded [³H] E. coli DNA and a minimum of 200 units of M-MuLV Reverse Transcriptase incubated for 4 hours at 37°C releases <0.1% of the total radioactivity.	Pass
Non-Specific DNase Activity (16 Hour) A 50 μl reaction in M-MuLV Reverse Transcriptase Reaction Buffer containing 1 μg of T3 DNA in addition to a reaction containing Lambda-HindIII DNA and a minimum of 200 units of M-MuLV Reverse Transcriptase incubated for 16 hours at 37°C results in a DNA pattern free of detectable nuclease degradation as determined by agarose gel electrophoresis.	Pass
RNAse Activity Assay (2 Hour Digestion) A 10 µl reaction in NEBuffer 4 containing 40 ng of a 300 base single-stranded RNA and a minimum of 1 µl of M-MuLV Reverse Transcriptase incubated for 2 hours at 37°C	Pass

M0253L / Lot: 10030281

Page 1 of 2

Assay Name/Specification	Lot # 10030281
results in no detectable degradation of the RNA as determined by gel electrophoresis using fluorescent detection.	

This product has been tested and shown to be in compliance with all specifications.

Tony Spear-Alfonso Production Scientist

04 Oct 2018

Michael Tonello

Packaging Quality Control Inspector

02 Jan 2019

